This project might be open to known security vulnerabilities, which can be prevented by tightening the version range of affected dependencies. Find detailed information at the bottom.

Crate thruster

Dependencies

(19 total, 9 outdated, 6 possibly insecure)

CrateRequiredLatestStatus
 bytes^0.41.10.1out of date
 futures^0.1.230.3.31out of date
 http ⚠️^0.1.71.3.1out of date
 httparse^1.1.21.10.1up to date
 hyper ⚠️^0.12.101.6.0out of date
 log^0.3.60.4.27out of date
 net2^0.20.2.39up to date
 num_cpus^1.01.17.0up to date
 regex ⚠️^0.21.11.1out of date
 serde^1.0.241.0.219up to date
 serde_derive^1.0.241.0.219up to date
 serde_json^1.0.81.0.140up to date
 smallvec ⚠️^0.6.21.15.1out of date
 templatify^0.2.20.2.3up to date
 time ⚠️^0.10.3.41out of date
 tokio ⚠️^0.1.61.45.1out of date
 tokio-codec^0.1.00.1.2up to date
 tokio-core^0.1.170.1.18up to date
 tokio-io^0.10.1.13up to date

Dev dependencies

(7 total, 4 outdated, 1 insecure, 1 possibly insecure)

CrateRequiredLatestStatus
 criterion^0.20.6.0out of date
 diesel ⚠️^1.32.2.11out of date
 dotenv^0.13.00.15.0out of date
 env_logger^0.3.40.11.8out of date
 lazy_static^1.1.01.5.0up to date
 num_cpus^1.01.17.0up to date
 rustc-serialize ⚠️^0.30.3.25insecure

Security Vulnerabilities

http: Integer Overflow in HeaderMap::reserve() can cause Denial of Service

RUSTSEC-2019-0033

HeaderMap::reserve() used usize::next_power_of_two() to calculate the increased capacity. However, next_power_of_two() silently overflows to 0 if given a sufficiently large number in release mode.

If the map was not empty when the overflow happens, the library will invoke self.grow(0) and start infinite probing. This allows an attacker who controls the argument to reserve() to cause a potential denial of service (DoS).

The flaw was corrected in 0.1.20 release of http crate.

http: HeaderMap::Drain API is unsound

RUSTSEC-2019-0034

time: Potential segfault in the time crate

RUSTSEC-2020-0071

Impact

The affected functions set environment variables without synchronization. On Unix-like operating systems, this can crash in multithreaded programs. Programs may segfault due to dereferencing a dangling pointer if an environment variable is read in a different thread than the affected functions. This may occur without the user's knowledge, notably in the Rust standard library or third-party libraries.

The affected functions from time 0.2.7 through 0.2.22 are:

  • time::UtcOffset::local_offset_at
  • time::UtcOffset::try_local_offset_at
  • time::UtcOffset::current_local_offset
  • time::UtcOffset::try_current_local_offset
  • time::OffsetDateTime::now_local
  • time::OffsetDateTime::try_now_local

The affected functions in time 0.1 (all versions) are:

  • time::at_utc
  • time::at
  • time::now
  • time::tzset

Non-Unix targets (including Windows and wasm) are unaffected.

Patches

Pending a proper fix, the internal method that determines the local offset has been modified to always return None on the affected operating systems. This has the effect of returning an Err on the try_* methods and UTC on the non-try_* methods.

Users and library authors with time in their dependency tree should perform cargo update, which will pull in the updated, unaffected code.

Users of time 0.1 do not have a patch and should upgrade to an unaffected version: time 0.2.23 or greater or the 0.3 series.

Workarounds

A possible workaround for crates affected through the transitive dependency in chrono, is to avoid using the default oldtime feature dependency of the chrono crate by disabling its default-features and manually specifying the required features instead.

Examples:

Cargo.toml:

chrono = { version = "0.4", default-features = false, features = ["serde"] }
chrono = { version = "0.4.22", default-features = false, features = ["clock"] }

Commandline:

cargo add chrono --no-default-features -F clock

Sources:

smallvec: Buffer overflow in SmallVec::insert_many

RUSTSEC-2021-0003

A bug in the SmallVec::insert_many method caused it to allocate a buffer that was smaller than needed. It then wrote past the end of the buffer, causing a buffer overflow and memory corruption on the heap.

This bug was only triggered if the iterator passed to insert_many yielded more items than the lower bound returned from its size_hint method.

The flaw was corrected in smallvec 0.6.14 and 1.6.1, by ensuring that additional space is always reserved for each item inserted. The fix also simplified the implementation of insert_many to use less unsafe code, so it is easier to verify its correctness.

Thank you to Yechan Bae (@Qwaz) and the Rust group at Georgia Tech’s SSLab for finding and reporting this bug.

hyper: Lenient `hyper` header parsing of `Content-Length` could allow request smuggling

RUSTSEC-2021-0078

hyper's HTTP header parser accepted, according to RFC 7230, illegal contents inside Content-Length headers. Due to this, upstream HTTP proxies that ignore the header may still forward them along if it chooses to ignore the error.

To be vulnerable, hyper must be used as an HTTP/1 server and using an HTTP proxy upstream that ignores the header's contents but still forwards it. Due to all the factors that must line up, an attack exploiting this vulnerability is unlikely.

hyper: Integer overflow in `hyper`'s parsing of the `Transfer-Encoding` header leads to data loss

RUSTSEC-2021-0079

When decoding chunk sizes that are too large, hyper's code would encounter an integer overflow. Depending on the situation, this could lead to data loss from an incorrect total size, or in rarer cases, a request smuggling attack.

To be vulnerable, you must be using hyper for any HTTP/1 purpose, including as a client or server, and consumers must send requests or responses that specify a chunk size greater than 18 exabytes. For a possible request smuggling attack to be possible, any upstream proxies must accept a chunk size greater than 64 bits.

tokio: Data race when sending and receiving after closing a `oneshot` channel

RUSTSEC-2021-0124

If a tokio::sync::oneshot channel is closed (via the oneshot::Receiver::close method), a data race may occur if the oneshot::Sender::send method is called while the corresponding oneshot::Receiver is awaited or calling try_recv.

When these methods are called concurrently on a closed channel, the two halves of the channel can concurrently access a shared memory location, resulting in a data race. This has been observed to cause memory corruption.

Note that the race only occurs when both halves of the channel are used after the Receiver half has called close. Code where close is not used, or where the Receiver is not awaited and try_recv is not called after calling close, is not affected.

See tokio#4225 for more details.

rustc-serialize: Stack overflow in rustc_serialize when parsing deeply nested JSON

RUSTSEC-2022-0004

When parsing JSON using json::Json::from_str, there is no limit to the depth of the stack, therefore deeply nested objects can cause a stack overflow, which aborts the process.

Example code that triggers the vulnerability is

fn main() {
    let _ = rustc_serialize::json::Json::from_str(&"[0,[".repeat(10000));
}

serde is recommended as a replacement to rustc_serialize.

regex: Regexes with large repetitions on empty sub-expressions take a very long time to parse

RUSTSEC-2022-0013

The Rust Security Response WG was notified that the regex crate did not properly limit the complexity of the regular expressions (regex) it parses. An attacker could use this security issue to perform a denial of service, by sending a specially crafted regex to a service accepting untrusted regexes. No known vulnerability is present when parsing untrusted input with trusted regexes.

This issue has been assigned CVE-2022-24713. The severity of this vulnerability is "high" when the regex crate is used to parse untrusted regexes. Other uses of the regex crate are not affected by this vulnerability.

Overview

The regex crate features built-in mitigations to prevent denial of service attacks caused by untrusted regexes, or untrusted input matched by trusted regexes. Those (tunable) mitigations already provide sane defaults to prevent attacks. This guarantee is documented and it's considered part of the crate's API.

Unfortunately a bug was discovered in the mitigations designed to prevent untrusted regexes to take an arbitrary amount of time during parsing, and it's possible to craft regexes that bypass such mitigations. This makes it possible to perform denial of service attacks by sending specially crafted regexes to services accepting user-controlled, untrusted regexes.

Affected versions

All versions of the regex crate before or equal to 1.5.4 are affected by this issue. The fix is include starting from regex 1.5.5.

Mitigations

We recommend everyone accepting user-controlled regexes to upgrade immediately to the latest version of the regex crate.

Unfortunately there is no fixed set of problematic regexes, as there are practically infinite regexes that could be crafted to exploit this vulnerability. Because of this, we do not recommend denying known problematic regexes.

Acknowledgements

We want to thank Addison Crump for responsibly disclosing this to us according to the Rust security policy, and for helping review the fix.

We also want to thank Andrew Gallant for developing the fix, and Pietro Albini for coordinating the disclosure and writing this advisory.

diesel: Binary Protocol Misinterpretation caused by Truncating or Overflowing Casts

RUSTSEC-2024-0365

The following presentation at this year's DEF CON was brought to our attention on the Diesel Gitter Channel:

SQL Injection isn't Dead: Smuggling Queries at the Protocol Level
http://web.archive.org/web/20240812130923/https://media.defcon.org/DEF%20CON%2032/DEF%20CON%2032%20presentations/DEF%20CON%2032%20-%20Paul%20Gerste%20-%20SQL%20Injection%20Isn't%20Dead%20Smuggling%20Queries%20at%20the%20Protocol%20Level.pdf
(Archive link for posterity.) Essentially, encoding a value larger than 4GiB can cause the length prefix in the protocol to overflow, causing the server to interpret the rest of the string as binary protocol commands or other data.

It appears Diesel does perform truncating casts in a way that could be problematic, for example: https://github.com/diesel-rs/diesel/blob/ae82c4a5a133db65612b7436356f549bfecda1c7/diesel/src/pg/connection/stmt/mod.rs#L36

This code has existed essentially since the beginning, so it is reasonable to assume that all published versions <= 2.2.2 are affected.

Mitigation

The prefered migration to the outlined problem is to update to a Diesel version newer than 2.2.2, which includes fixes for the problem.

As always, you should make sure your application is validating untrustworthy user input. Reject any input over 4 GiB, or any input that could encode to a string longer than 4 GiB. Dynamically built queries are also potentially problematic if it pushes the message size over this 4 GiB bound.

For web application backends, consider adding some middleware that limits the size of request bodies by default.

Resolution

Diesel now uses #[deny] directives for the following Clippy lints:

to prevent casts that will lead to precision loss or other trunctations. Additionally we performed an audit of the relevant code.

A fix is included in the 2.2.3 release.