This project might be open to known security vulnerabilities, which can be prevented by tightening the version range of affected dependencies. Find detailed information at the bottom.

Crate dockworker

Dependencies

(25 total, 13 outdated, 6 possibly insecure)

CrateRequiredLatestStatus
 backtrace-sys=0.1.230.1.37out of date
 base64^0.9.20.22.0out of date
 byteorder^1.1.01.5.0up to date
 chrono ⚠️^0.4.60.4.37maybe insecure
 dirs^1.0.05.0.1out of date
 failure^0.1.50.1.8up to date
 futures^0.10.3.30out of date
 http ⚠️^0.11.1.0out of date
 hyper ⚠️^0.121.2.0out of date
 hyper-tls^0.30.6.0out of date
 hyperlocal^0.60.8.0out of date
 hyperx^0.141.4.0out of date
 log^0.40.4.21up to date
 mime^0.30.3.17up to date
 named_pipe^0.2.20.4.1out of date
 native-tls^0.20.2.11up to date
 nix^0.110.28.0out of date
 openssl ⚠️^0.100.10.64maybe insecure
 serde^1.01.0.197up to date
 serde_derive^1.01.0.197up to date
 serde_json^1.01.0.115up to date
 tar ⚠️^0.40.4.40maybe insecure
 tokio ⚠️^0.11.36.0out of date
 unix_socket^0.5.00.5.0up to date
 url^1.2.22.5.0out of date

Dev dependencies

(3 total, 2 outdated)

CrateRequiredLatestStatus
 env_logger^0.50.11.3out of date
 failure^0.1.50.1.8up to date
 rand^0.50.8.5out of date

Security Vulnerabilities

http: Integer Overflow in HeaderMap::reserve() can cause Denial of Service

RUSTSEC-2019-0033

HeaderMap::reserve() used usize::next_power_of_two() to calculate the increased capacity. However, next_power_of_two() silently overflows to 0 if given a sufficiently large number in release mode.

If the map was not empty when the overflow happens, the library will invoke self.grow(0) and start infinite probing. This allows an attacker who controls the argument to reserve() to cause a potential denial of service (DoS).

The flaw was corrected in 0.1.20 release of http crate.

http: HeaderMap::Drain API is unsound

RUSTSEC-2019-0034

chrono: Potential segfault in `localtime_r` invocations

RUSTSEC-2020-0159

Impact

Unix-like operating systems may segfault due to dereferencing a dangling pointer in specific circumstances. This requires an environment variable to be set in a different thread than the affected functions. This may occur without the user's knowledge, notably in a third-party library.

Workarounds

No workarounds are known.

References

hyper: Lenient `hyper` header parsing of `Content-Length` could allow request smuggling

RUSTSEC-2021-0078

hyper's HTTP header parser accepted, according to RFC 7230, illegal contents inside Content-Length headers. Due to this, upstream HTTP proxies that ignore the header may still forward them along if it chooses to ignore the error.

To be vulnerable, hyper must be used as an HTTP/1 server and using an HTTP proxy upstream that ignores the header's contents but still forwards it. Due to all the factors that must line up, an attack exploiting this vulnerability is unlikely.

hyper: Integer overflow in `hyper`'s parsing of the `Transfer-Encoding` header leads to data loss

RUSTSEC-2021-0079

When decoding chunk sizes that are too large, hyper's code would encounter an integer overflow. Depending on the situation, this could lead to data loss from an incorrect total size, or in rarer cases, a request smuggling attack.

To be vulnerable, you must be using hyper for any HTTP/1 purpose, including as a client or server, and consumers must send requests or responses that specify a chunk size greater than 18 exabytes. For a possible request smuggling attack to be possible, any upstream proxies must accept a chunk size greater than 64 bits.

tar: Links in archive can create arbitrary directories

RUSTSEC-2021-0080

When unpacking a tarball that contains a symlink the tar crate may create directories outside of the directory it's supposed to unpack into.

The function errors when it's trying to create a file, but the folders are already created at this point.

use std::{io, io::Result};
use tar::{Archive, Builder, EntryType, Header};

fn main() -> Result<()> {
    let mut buf = Vec::new();

    {
        let mut builder = Builder::new(&mut buf);

        // symlink: parent -> ..
        let mut header = Header::new_gnu();
        header.set_path("symlink")?;
        header.set_link_name("..")?;
        header.set_entry_type(EntryType::Symlink);
        header.set_size(0);
        header.set_cksum();
        builder.append(&header, io::empty())?;

        // file: symlink/exploit/foo/bar
        let mut header = Header::new_gnu();
        header.set_path("symlink/exploit/foo/bar")?;
        header.set_size(0);
        header.set_cksum();
        builder.append(&header, io::empty())?;

        builder.finish()?;
    };

    Archive::new(&*buf).unpack("demo")
}

This has been fixed in https://github.com/alexcrichton/tar-rs/pull/259 and is published as tar 0.4.36. Thanks to Martin Michaelis (@mgjm) for discovering and reporting this, and Nikhil Benesch (@benesch) for the fix!

tokio: Data race when sending and receiving after closing a `oneshot` channel

RUSTSEC-2021-0124

If a tokio::sync::oneshot channel is closed (via the oneshot::Receiver::close method), a data race may occur if the oneshot::Sender::send method is called while the corresponding oneshot::Receiver is awaited or calling try_recv.

When these methods are called concurrently on a closed channel, the two halves of the channel can concurrently access a shared memory location, resulting in a data race. This has been observed to cause memory corruption.

Note that the race only occurs when both halves of the channel are used after the Receiver half has called close. Code where close is not used, or where the Receiver is not awaited and try_recv is not called after calling close, is not affected.

See tokio#4225 for more details.

openssl: `openssl` `X509VerifyParamRef::set_host` buffer over-read

RUSTSEC-2023-0044

When this function was passed an empty string, openssl would attempt to call strlen on it, reading arbitrary memory until it reached a NUL byte.