This project might be open to known security vulnerabilities, which can be prevented by tightening the version range of affected dependencies. Find detailed information at the bottom.

Crate pyo3

Dependencies

(7 total, 4 outdated, 1 possibly insecure)

CrateRequiredLatestStatus
 inventory^0.1.30.3.15out of date
 libc^0.2.530.2.162up to date
 mashup^0.1.90.1.14+deprecatedup to date
 num-complex^0.2.10.4.6out of date
 num-traits^0.2.60.2.19up to date
 pyo3cls=0.7.00.12.5out of date
 spin ⚠️^0.5.00.9.8out of date

Dev dependencies

(2 total, 1 outdated)

CrateRequiredLatestStatus
 assert_approx_eq^1.1.01.1.0up to date
 indoc^0.3.32.0.5out of date

Security Vulnerabilities

spin: Wrong memory orderings in RwLock potentially violates mutual exclusion

RUSTSEC-2019-0013

Wrong memory orderings inside the RwLock implementation allow for two writers to acquire the lock at the same time. The drop implementation used Ordering::Relaxed, which allows the compiler or CPU to reorder a mutable access on the locked data after the lock has been yielded.

Only users of the RwLock implementation are affected. Users of Once (including users of lazy_static with the spin_no_std feature enabled) are NOT affected.

On strongly ordered CPU architectures like x86, the only real way that this would lead to a memory corruption is if the compiler reorders an access after the lock is yielded, which is possible but in practice unlikely. It is a more serious issue on weakly ordered architectures such as ARM which, except in the presence of certain instructions, allow the hardware to decide which accesses are seen at what times. Therefore on an ARM system it is likely that using the wrong memory ordering would result in a memory corruption, even if the compiler itself doesn't reorder the memory accesses in a buggy way.

The flaw was corrected by https://github.com/mvdnes/spin-rs/pull/66.